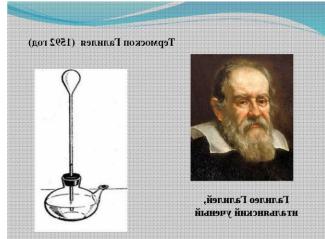


Термометр



История изобретения

```
Термо́метр (греч. θέρμη «тепло» + μετρέω «измеряю»), также гра́дусник — измерительный прибор для измерения температуры различных тел и сред (воздуха, почвы, воды и т. д.). По принципу измерения существует несколько видов термометров: жидкостные; механические; электронные; оптические; газовые; инфракрасные<sup>[en]</sup>.
```

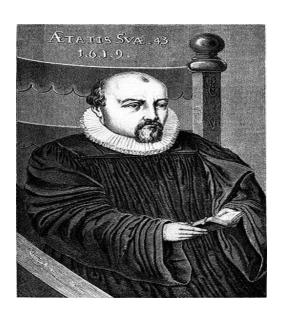
Изобретателем термометра принято считать Галилея: в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани, засвидетельствовали, что уже в 1597 году он сделал нечто вроде термобароскопа (термоскоп). Галилей изучал в это время работы Герона Александрийского, у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания.

Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту.

В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления.

В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили бренди и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня.

В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили бренди и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня.


Изобретение термометра также приписывают лорду Бэкону, Роберту Фладду, Санториусу, Скарпи, Корнелиусу Дреббелю, Порте и Саломону де Коссу, писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления

Фрэнсис Бэкон

Роберт Фладд

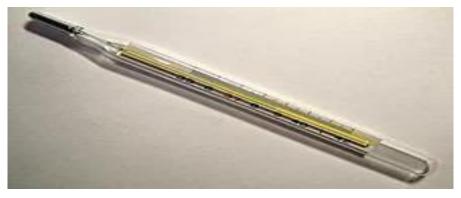
Саломон де Косс (

Термометры с жидкостью описаны в первый раз в 1667 г. «Saggi di naturale esperienze fatte nell'Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия.

Сначала эти термометры наполняли водой, но они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского Фердинанда II. Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

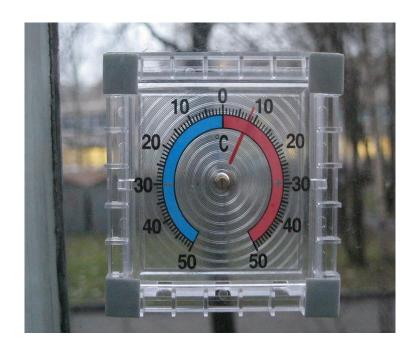
Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40.

Современную форму термометру придал <u>Фаренгейт</u> и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же состоянии <u>барометра</u>. Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения.


Даниель Габриель Фаренгейт

Жидкостные термометры

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это <u>спирт</u> или <u>ртуть</u>), при изменении температуры окружающей среды.


Жидкостные термометры подразделяются на *ртутные* и *термометры с не ртутным заполнением*. Последние применяются не только из-за экономических соображений, но и также из-за использования широкого диапазона температур. Так, в термометрии, в качестве нертутного заполнения термометров используются вещества: *спирты (этиловый, метиловый, пропиловый), пентан, толуол, сероуглерод, ацетон, таллиевая амальгама и галлий.*

В связи с тем, что с 2020 года <u>ртуть будет под запретом</u> во всём мире^{[2][3]} из-за её опасности для здоровья^[4], во многих областях деятельности ведётся поиск альтернативных наполнений для бытовых термометров. Например, такой заменой стал <u>галинстан</u> (сплав металлов: <u>галлия</u>, <u>индия</u>, <u>олова</u> и <u>цинка</u>). Галлий применяют для измерения высоких температур. Также ртутные термометры все чаще с большим успехом заменяются платиновыми или медными термометрами сопротивления. Также все шире применяются и другие типы термометров.

Механические термометры

Термометры этого типа действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлическая спираль или лента из биметалла. По принципу действия отдалённо напоминают анероид.

Оконный механический термометр

Механический термометр

Электронные термометры

Принцип работы электронных термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.

Электронные термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Уличный электронный термометр

Инфракрасные термометры

Infrared thermometer (Innovo).jpg
Инфракрасный термометр позволяет измерять
температуру без непосредственного контакта с человеком.
В 2014 году Россия подписала Минаматскую конвенцию о
ртути, и к 2030 году Россия откажется от производства
ртутных термометров.[5]В некоторых странах уже давно
имеется тенденция отказа от ртутных термометров в
пользу инфракрасных не только в медицинских
учреждениях, но и на бытовом уровне.